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1
INTRODUCTION

Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful and theoretically complex
analytical tool that is widely utilized in chemistry, biochemistry, and biology for elucidating
the molecular structure of compounds and studying molecular dynamics. The technique is
pivotal in various scientific and industrial applications, such as determining the content and
purity of a sample as well as its molecular integrity. However, the implementation of NMR
spectrometry, particularly in portable and low-cost formats, has been a subject of ongoing
research and development.

One viable solution to the challenges of miniaturization and efficiency enhancement lies
in the development of Application-Specific Integrated Circuits (ASICs). ASICs, with their
specially designed chips, are tailored to maximize both miniaturization and efficiency in specific
applications, such as NMR spectrometry. For instance, Bürkle et al.[1], Dreyer et al.[2], and
Krüger et al.[3] have designed ASICs that facilitate the creation of notably compact NMR
spectrometers without compromising performance(figure 1).

Figure 1: Photographs of ASICs and their architectures. Reprint from [1][3][2].

While the design and manufacturing of ASIC offer a pathway towards miniaturized and
efficient NMR spectrometers, the associated costs can be prohibitively high. Consequently,
Field-Programmable Gate Arrays (FPGAs) emerge as a compelling alternative, striking a bal-
ance between performance and development costs. Pioneering work by Takeda [4][5] around
2007 underscored the viability of FPGAs in constructing a home-built NMR spectrometer. The
subsequent, rapid evolution of Integrated Circuit technology, characterized by an exponential
growth in transistor count, has precipitated a significant leap in performance capabilities. More
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recently, researchers such as Louis-Joseph A et al.[6], Webber J B W et al.[7], and Ariando et
al.[8] have demonstrated the construction of a compact NMR spectrometer utilizing a con-
temporary FPGA. Louis-Joseph A et al. provided a comprehensive overview of the ongoing
development and prevailing challenges in creating low-cost, portable Fourier Transform NMR
(FT-NMR) systems[6]. Furthermore, Ariando et al.ingeniously integrated a System-on-Chip
(SoC) that amalgamates an ARM microprocessor and an FPGA(figure 2), facilitating fully
autonomous operation without necessitating an external computer[8].

Figure 2: Photograph of SoC and his architecture. Reprint from Ariando et al.[8].

Moreover, advancements in artificial intelligence, particularly in machine learning, are be-
ginning to permeate various facets of NMR spectroscopy, enhancing its capabilities and ap-
plications. For instance, Manu V S et al.[9] has explored the utilization of AI-designed NMR
spectroscopy RF pulses to expedite acquisition at both high and ultra-high magnetic fields,
showcasing the potential of artificial intelligence in optimizing data acquisition processes. Sim-
ilarly, Schmid N et al.[10] has employed deep learning algorithms to resolve one-dimensional
NMR spectra, demonstrating the efficacy of deep learning in enhancing the resolution and in-
terpretability of spectral data(figure 3). Furthermore, Kuhn S et al.[11] has leveraged deep
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learning to identify substructures in two-dimensional NMR spectra of mixtures, illustrating the
potential of artificial intelligence in deciphering complex spectral data and revealing underlying
structural information.

Figure 3: Data flow diagram for the neural network. Reprint from Schmid N et al.[10].
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2
PORTABLE NMR SPECTROMETER DIGITAL

BACK-END DESIGN

2.1 Carr-Purcell-Meiboom-Gill (CPMG) Sequence NMR

Figure 4: Schematic of CPMG.

The CPMG sequence begins with a π
2 -pulse that tips the magnetization into the transverse

plane. After a time interval τ , a π-pulse is applied, which refocuses the dephasing magnetization
caused by field inhomogeneities. This π-pulse is typically referred to as the refocusing or echo
pulse. After another interval τ , an echo is observed. This process is repeated, with π-pulses
applied at subsequent intervals of 2τ , resulting in a series of echoes known as the spin echo
train.

The spacing between the π-pulses is crucial; it is set so that any phase errors introduced
by inhomogeneities in the main magnetic field B0 are corrected, which is why the sequence is
particularly robust against such imperfections. The sequence can be represented as:(

π

2

)
x

− τ − (π)y − 2τ − (π)y − . . .
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where the subscript x and y denote the axis along which the RF pulse is applied.
Each π-pulse effectively rephases the spin system, compensating for the dephasing that

occurs due to the inhomogeneities. This results in a measurable echo signal, which decays
over time as a result of true spin-spin relaxation, providing an accurate measurement of the T2
relaxation time. CPMG is an important NMR technique which allows the true T2 relaxation
time to be measured even with an inhomogeneous B0 field.

2.2 NMR Controller Design with DE1-SoC

Figure 5: NMR FPGA controller system block diagram on DE1-SoC board. Reprint from
Ariando et al.[8].

The block diagram of the NMR FPGA controller system, as shown in Figure 5, consists
of the CPMG pulse program, ADC driver, and various interconnections. The controller must
possess configurability in several parameters such as operating frequency, sampling frequency,
duty cycle, delay parameters, phase cycle, and the number of samples. These parameters,
once set by the NMR C program inside the ARM processor, remain constant throughout the
operation.

The CPMG pulse program, hardcoded into the FPGA fabric, necessitates configurable pa-
rameters for execution, including pulse length for both π-pulse and π

2 -pulse, echo spacing, and
phase cycle. Additional parameters are also utilized, communicated via the AXI bus. The
system utilizes dual PLLs; one for the transmit side interfaced with the transmitter unit, and
another within the ADC driver to generate the clock used by the SPI driver for the ADC.

• Transmission Driver and ADC Driver
The FPGA’s transmit driver includes a PLL block, multiple multiplexers, and parameter

registers. The PLL generates four phases from a single frequency, with a π
2 phase difference,
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designated as fx, fy, −fx, −fy to avoid confusion with nutation flip angles. These are then
combined to form the differential transmit signal controlled by the CPMG pulse program.

The ADC driver requires parameters such as samples per echo, ADC initialization delay,
and ADC frequency. It captures ADC data sequences and adds a starting delay as specified
by the CPMG finite state machine. The captured data is transferred to a FIFO buffer for
processing.

• NMR signal processing
The signal processing chain starts with the Analog-to-Digital Converter (ADC) operating

at the Nyquist sampling rate, which is sufficiently high to capture the essential frequency
components of the NMR signal. This is critical as it allows for the direct downconversion of the
digitized data using the Larmor frequency, thereby streamlining the signal processing pipeline.

(1)Phase Correction and Summation:
Due to variances in the initial phase of the transmit signal across different scans, a phase

correction mechanism is necessary. The process involves summing the echoes from each scan to
form a composite signal. The phase of this aggregate signal is then computed, serving as the
rotation angle for phase correction.

Figure 6: MATLAB NMR signal processing. Reprint from Ariando et al.[8].

(2)Detailed Signal Processing Steps:
Figure 6 depicts the detailed steps involved in the signal processing chain:

1. The signal from each NMR scan passes through an ADC, converting the analog signal
into a digital format for further processing.

2. Quadrature detection is performed to separate the signal into its in-phase (I) and quadra-
ture (Q) components, each subsequently filtered through a low-pass filter (LPF) to remove
high-frequency noise.

3. The filtered I and Q components are then combined to form a complex echo signal.

4. This complex echo undergoes phase correction through a rotation operation, where the
previously computed angle is applied to align the phases of echoes from different scans.

5. The rotated echo is then subjected to matched filtering to enhance the signal-to-noise
ratio.
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6. Finally, the processed signal is outputted as the resulting data, ready for further analysis
or display.

The process described ensures that the phase inconsistencies between scans are corrected,
resulting in a uniform and coherent data set. Signal processing migration from MATLAB to
python, which can be implemented directly in DE1-SoC board, has been done. This will make
the system truly portable.
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3
FPGA BASED DECONVOLUTION OF 1D NMR
SPECTRA DEEP LEARNING ACCELERATOR

Schmid N.et al.[10] has developed a highly accurate deconvolutional deep learning network
by integrating Convolutional Neural Networks (CNN) and Bidirectional Long Short-Term Mem-
ory (Bi-LSTM). The following Python code implements this AI architecture, enabling data
analysis on personal computers.

Figure 7: Detailed deep neural network architecture. Reprint from Schmid N et al.[10].

The following is reproduced Python code:
import tensorflow as tf
from tensorflow .keras. layers import Input , Conv1D , Dense , LSTM ,

Bidirectional , TimeDistributed
from tensorflow .keras. models import Model

# Define the input shape
input_shape = (None , 10) # Assuming variable sequence length N and 10

channels

# Input layer
inputs = Input(shape= input_shape )
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# Inception module with different kernel sizes
conv1 = Conv1D ( filters =16 , kernel_size =2, activation =’relu ’, padding =’same ’)

( inputs )
conv2 = Conv1D ( filters =32 , kernel_size =4, activation =’relu ’, padding =’same ’)

( inputs )
conv3 = Conv1D ( filters =64 , kernel_size =8, activation =’relu ’, padding =’same ’)

( inputs )
conv4 = Conv1D ( filters =16 , kernel_size =32 , activation =’relu ’, padding =’same ’

)( inputs )
conv5 = Conv1D ( filters =8, kernel_size =64 , activation =’relu ’, padding =’same ’)

( inputs )

# Concatenate the inception module filters
concatenated = tf.keras. layers . concatenate ([conv1 , conv2 , conv3 , conv4 ,

conv5])

# TimeDistributed Dense layers
td_dense1 = TimeDistributed (Dense(64 , activation =’relu ’))( concatenated )
td_dense2 = TimeDistributed (Dense(32 , activation =’relu ’))( td_dense1 )

# Bidirectional LSTM layer
bi_lstm = Bidirectional (LSTM(16 , return_sequences =True))( td_dense2 )

# More TimeDistributed Dense layers following the LSTM
td_dense3 = TimeDistributed (Dense(32 , activation =’relu ’))( bi_lstm )
td_dense4 = TimeDistributed (Dense(16 , activation =’relu ’))( td_dense3 )
td_dense5 = TimeDistributed (Dense(5, activation =’softmax ’))( td_dense4 )

# Create the model
model = Model( inputs =inputs , outputs = td_dense5 )

# Compile the model with ADAM optimizer
optimizer = tf.keras. optimizers .Adam( learning_rate =0.001)
model. compile ( optimizer =optimizer , loss=’categorical_crossentropy ’, metrics =

[’accuracy ’])

# Model summary
model. summary ()

However, to facilitate real-time data measurement and deconvolution in Nuclear Magnetic
Resonance (NMR) devices, several enhancements are necessary. Beyond transferring the trained
network weights and adapting the network, it is crucial to design a specialized accelerator on the
Zynq Programmable Logic (PL) side. This accelerator aims to harness the parallel computing
capabilities of Field-Programmable Gate Arrays (FPGAs). Consequently, a streamlined CNN
accelerator was constructed. For the Bi-LSTM component, the methodologies presented in the
studies by Hao Wang et al.[12] offer valuable insights.

10/18



FPGA-based NMR digital back-end and
spectra deconvolution accelerator

Figure 8: Hardware architecture of the Bi-LSTM accelerator. Reprint from Hao Wang et al.[12].

3.1 LeNet CNN Accelerator

LeNet-5, developed by Yann LeCun in 1998[13], is one of the pioneering convolutional
neural networks (CNNs) and has significantly influenced the field of machine vision. Designed
for handwritten digit recognition, LeNet-5 has been instrumental in advancing the capabilities
of deep learning in image classification. It consists of seven layers (excluding the input layer),
each playing a specific role in feature detection and recognition. The LeNet-5 architecture
which we build is simplified as follows:

Figure 9: LeNet-5 Convolutional Neural Network Model.

• The first convolutional layer applies a kernel of size 5 × 5, resulting in 24 feature maps
with the dimensions 24×24×6. This is followed by a subsampling operation with a 2×2
kernel, yielding 12 × 12 × 6 feature maps.

• The second layer increases the depth with a 5 × 5 kernel, creating 8 feature maps of size
8 × 8 × 12, followed by another convolution with a 4 × 4 kernel to produce 4 feature maps
of dimensions 4 × 4 × 12.

• After flattening, a fully connected layer with 192 neurons is applied, followed by an output
layer of 10 neurons for classification, utilizing a softmax activation function for multi-class
classification.
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• Each convolutional layer prior to the fully connected layer includes operations such as
ReLU activation to introduce non-linearity, and padding is applied to maintain the size
of the feature maps.

• Specifically, after the first convolutional operation, the size of the feature maps is 24×24,
reduced to 12 × 12 after subsampling with a stride of 2 and no padding.

• The subsequent convolutional layers maintain the size of 12 × 12 by using 5 × 5 kernels,
with a stride of 1 and no padding, followed by ReLU activation. The feature maps are
then reduced to 8 × 8 and finally to 4 × 4 after additional convolution and subsampling
operations.

Figure 10: LeNet-5 simplified Model.

3.2 Overall design solution

Resource Utilization and Layer Operations

The FPGA implementation of LeNet-5 involves a meticulous design to fit within the resource
constraints of the hardware. The convolution layers F1 to F6 are executed sequentially, each
comprising different operational units:
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1. The F1 layer is executed with a single operational unit due to the large feature map size
of 28×28. The unit utilizes two convolution kernels, each having a size of 5×5, to process
the input image.

2. The F2 layer has 6 operational units for the 14×14 feature map size, utilizing 6 convolution
kernels of 5 × 5.

3. The F3 layer has 16 operational units due to the decreased feature map size of 10 × 10,
each using a 5 × 5 kernel.

4. The F4 layer continues with 16 operational units for the 6 × 6 feature maps.

5. The F5 layer has 120 operational units for the fully connected layer, transforming the
output of the previous layer into a 1-dimensional vector.

6. The F6 layer has 84 operational units, corresponding to the 84 neurons in the fully
connected layer of the network architecture.

The data flow between layers is managed through FIFO buffers, ensuring that the processing
of one layer can be performed while the next layer’s data is being preloaded, optimizing the
use of FPGA resources.

FIFO Configuration for Data Flow Management

The FIFO buffers are configured to handle the data flow between layers:

• FIFO 01 manages the output from F1 to F2.

• FIFO 02 manages the output from F2 to F3.

• FIFO 03 manages the output from F3 to F4.

• FIFO 04 manages the output from F4 to F5.

• FIFO 05 manages the output from F5 to F6.

• FIFO 06 manages the output from F6 to the output layer.

Each FIFO buffer is carefully sized to accommodate the data volume from the corresponding
layers, ensuring that the output from one layer is synchronized with the input requirements of
the subsequent layer. This approach minimizes idle time between operations and maximizes
the data throughput within the FPGA-based LeNet-5 implementation.
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Figure 11: Block Diagram of Accelerator Architecture.

Convolution Implementation

In the convolution operation, a 5 × 5 kernel is used without padding. The convolution
is performed in two steps. The first step processes the data, and the second step combines
the processed data into the final result. This two-step process accelerates the convolution
operation. Additionally, a shift ram structure is utilized to streamline the storage and retrieval
of intermediate data. This structure holds the first layer’s 28 × 28 data and the second layer’s
12 × 12 data, enhancing the efficiency of the convolution operation.

Pooling Implementation

The pooling operation also uses a 5 × 5 kernel. To optimize the process, a 25 element
shift register is employed, which works in tandem with the 5 × 5 kernel to perform the pooling
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operation. This mechanism effectively reduces the feature maps’ dimensions, critical for the
network’s downsampling stages.

Fully Connected Layer Implementation

For the fully connected layers, the FPGA implementation uses a dedicated processing ele-
ment. Each of the 192 input features is connected to the 10 output features, thus computing
the layer in parallel. This results in a significant reduction in processing time, ensuring that
the fully connected layer computation is efficient.

Result Calculation and Output

The result calculation takes the 192 input features and connects them to the 10 output
features. For each output feature, a 192-dimensional vector is multiplied by a weight matrix of
size 192 × 10 to produce the final result. A shift register arrangement is employed to accelerate
the process. The shift registers of size w(96), w(128), w(144), w(160), and w(176) are used to
store the intermediate results for the computation of the output features. This implementation
allows for the simultaneous calculation of the output features, optimizing the use of FPGA
resources and minimizing computation time.
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4
CONCLUSIONS

4.1 Portable NMR spectrometer design

In conclusion, the comprehensive study of the autonomous, highly portable NMR spectrom-
eter, as delineated in the paper and further elucidated by the author’s open-source System-on-
Chip (SoC) design document, has significantly enhanced my understanding of NMR technol-
ogy. The innovative use of a low-cost SoC in the spectrometer’s design not only demystifies
the complexities associated with NMR spectroscopy but also exemplifies the potential for wider
accessibility and application.

Furthermore, the process of understanding open-source SoC design documents has afforded
me a deeper insight into the design techniques essential for NMR. Also signal processing migra-
tion from MATLAB to python, which can be implemented directly in DE1-SoC board, maked
the system truly portable.

4.2 FPGA based Deconvolution of 1D NMR spectra
deep learning accelerator

After that, I performed FPGA hardware gas pedal design for a simple Lenet CNN network,
I first learned to design it through HLS tool, which is relatively user friendly and only needs to
be written through C, but it also creates redundancy and sacrifices some computational speed.
Therefore, after that the design of the gas pedal from HDL was designed, which required a
better grasp of timing as well as resources to accomplish the important structural design. In
the future, by combining CNN and bidirectional LSTM gas pedals, the NMR deconvolution
deep learning network gas pedal can be designed, which in turn realizes the measurement,
processing and deconvolution on the same platform, greatly improving the portability of the
device and the testing efficiency.
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